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Overview New approach: Iterative Quantum Transformation Estimation
We propose an iterative method for estimating rigid transforma- I ,-: _ P e v Idea. Use a flexible K-bits discretization of SO(D) to approximate the rotation matrices with refinement,
tions from point sets using adiabatic quantum computation. E-', R AR : . optimize over the parameters of R to enforce orthogonality and iterate the process to improve accuracy.
R o L P In 2D, parameter 6 € R encodes rotation angle:
X = {561}% Reference point set (mass-centered), FHECE HHtH A PO

Y = {yl}l , Template point set (mass- centered)
R € SO(D) Rotation matrix that maps ) to X
(has p.= bbb -1)/2degrees of freedom).
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In 3D, parameter v = (v1,1,,v3)' € R> encodes rotation angle 6 = ||v||, and rotation axis x = v/ ||v||,:

R = MY = cos(0)I +sin(6)S, with M(0) =6S =0 - (O 1) .

sin 6 1 —cos6 0 =% x
. . . . . : M - | | o 2 i _
» Runs on an industrial adiabatic quantum computer — D-Wave. ' | R=é"" =1- 0 M(v) 7 M-(v), with M(v)=0-1 x3 0 —x |,
> R Rt rbitrary precision usi I man \a) 20, 0) 3. (©) Nolsy data. —x2 x1p 0
ecovers kiloan a _I ary precision using a use anage Figure: Results of our iterative quantum approach for transformation estimation (IQT) from point sets. Green: reference points. Orange: template points. Left: Initial
able number of qubits. misalignments. Right: Registration results. Our method performs well on several 2D and 3D datasets and robustly aligns the points even in the presence of noise. Until accuracy is satisfactory, iterate — (i) linearize, (ii) discretize , (iii) optimize:

(1) Linearize R around curent parameter z. := 6. (2D) resp. v. (3D) using first order Taylor expansion.

Objective Previous work (i) Discretize parameter z := 6 (2D) resp. v (3D) € |z. — A, z. + A using the K-bits representation
. o L o . | | | . | z:=z.+Uq wherewith D, =diag(2* 6
Task. Contruct for the least-squares formulation of the rigid point sets registration problem, cf. [1, 2] Quantum Approach (QA, [3]). Pick a finite set of basis matrices and approximate R with a binary linear 2N ) K - 92 T op ©
combination. In 2D (3D similar) and using the matrix exponential for rotation matrices, approximate U=2x (DO Dy DK—1> € R and ¢ = (qo qv - CIK—1> €10, 137
min Z % — Ryill (RPR) ’s | | 10 0 —1 o | | | | |
ReSO(D R =¢e"” =cos(0)] +sin(0)S with [ = 01 and S ={, 0 ) (D) (i) For any of the points y; in (RPR) and with R. being the constant term of R, we find [2] in 2D and in 3D
a corresponding QUBO formulation that can be executed on a current adiabatic quantum computer. . . L. . . . S0 R L R
P g_Q _ _ R | | T q. p as R = >, q:Qy using binary optimization variables g, € {0, 1} and selected basis matrices Ry: = Rcyi + RiUq. (7)
QUBO (quadratic unconstrained binary optimization). Combinatorial optimization problem in form of -
Or € {wCeR*, VweB;:=1{05,02,0.1,0.1,0.05}, VCe B, =1I,—18,—S}}. _ . . .
N
min g Wg+c'q, (1) Crucially, g appears linearly in Eq. (7), so (RPR) can be approximated by
| | | | g€{0,1}" | | | $ils o81" llll llll {!.l_ig"l 'E;i |i!i§ff!!:‘; - T T QUBO
with coupling matrix W and vektor of biases c¢ that an adiabatic guantum computer can potentially solve. ;ﬁi i , .- S L u"=;|i: EI{%IP}KP q Wq+c gq, ( )
ifficulti 11 N i 4L A
Oiieutties. - | o | .,_ . ,;;i;ufh!;tit: wﬁ?ﬁ L N N
> Eq (RPR) IS NOt a b|nary prOblem since RiIs a real matrix. | . o E e a1 131 Z? 0) W = UT ZRZTRZ [] and c — 2U| LRZT(RC)NG L .;Cl) (8)
» Eqg. (RPR) is not an unconstrained problem since R € SO(D) — R'R=1. Figure: Rigid point sets registration using QA [3]. Left: Initial misalignments. Right: Results of the registration. 0 i—1 i—1
Adiabatic Quantum Computing Experiments and Results
Principle. Construct two Hamiltonians, an inital hamiltonian H, with ground state |E(0)) = |[+)“" easy to _ QT2D(iter)  QT2D (er10) - == QT 20 (ter 15) = QA 20 ~
- TP - - - Eol0)) = 14) . Ablation Study on K. The method performs QA [3] QT [Ours] 3 - o - ¢
prepare and a final hamiltonian H; with ground state |Ey(1)) encoding the solution of the QUBO problem: _ | Ontimization Variable Matrix R Parameter § resp. v . L 8
well for K = 10 in 2D and K = 5 in 3D. P P- 107 i
n Optimization Scheme Fixed — fixed accuracy iterative — flexible accuracy g 0-5- 10:1: 9
Hy=-A() of|, and H =-B Z Wyo? @ o + Z o’ | (2) R orthogonal x v E e
—1 k=1 ”’:' == Number of qubits By|-|B;] -21in2D,81in3D K-P—10in 2D, 15in 3D. = S
i i ] Table: A comparative analysis of our optimization method with QA [3] - 3 (iter 5 bt 10, 11 9D (e 1) =
For the time s € |0, 1], let the time-dependent system Hamiltonian adlabatlcally evolve from Hy to H; as = 10 - y - 5 (CT 3D (ier 5 (CT 30 (iter 10) 1 [CT 30 (iter 15) $
! - S 1.0- 4 8
H(S) p— (1 — S)H() —|_ SH]. (3) = l:‘:j: : i:gggt;[:tzm S~ — IJI_,: - II Il 18—8 Lg,
~o= 2000Q (3D) = 107 }‘C_’,
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Adiabatic Theorem and Evolution. L (a) 2D (b) 3D Figure: Left: Alignment error e, .= |X — RY|r/||X |- and right: consistency error ¢ .= || - R'R||,. (note
r . . . Larger values of K result, due to noise, in . . . . . - o
s varies slowly enough, the adiabatic theorem states that the _ Figure: Embedding of our derived QUBOs for Eq. (RPR) on the D-Wave 2, 000Q quantum annealer [5]. log. scale) of IQT [ours] and its classical ICT counterpart [ours] against outliers. Our
E(s) evolution of the system governed by the Schrodinger equation chain breackage that decrease the results. We use ~ 4.5 times more physical than logical qubits and perform 100 reads of 20us per iteration. methods, compared to QA [3], robustly handle outliers while producing orthogonal matrices.
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