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Overview

We propose an iterative method for estimating rigid transforma-
tions from point sets using adiabatic quantum computation.

X̃ = {x̃i}N
i=1 Reference point set (mass-centered),

Ỹ = {ỹi}N
i=1 Template point set (mass-centered),

R ∈ SO(D) Rotation matrix that maps Ỹ to X̃
(has P := D(D− 1)/2 degrees of freedom).

I Runs on an industrial adiabatic quantum computer – D-Wave.
I Recovers R to an arbitrary precision using a user manage-

able number of qubits.

(a) 2D. (b) 3D. (c) Noisy data.
Figure: Results of our iterative quantum approach for transformation estimation (IQT) from point sets. Green: reference points. Orange: template points. Left: Initial

misalignments. Right: Registration results. Our method performs well on several 2D and 3D datasets and robustly aligns the points even in the presence of noise.

Objective

Task. Contruct for the least-squares formulation of the rigid point sets registration problem, cf. [1, 2]

min
R∈SO(D)

N∑
i=1

‖x̃i− Rỹi‖2
2 (RPR)

a corresponding QUBO formulation that can be executed on a current adiabatic quantum computer.
QUBO (quadratic unconstrained binary optimization). Combinatorial optimization problem in form of

min
q∈{0,1}n

q>Wq + c>q, (1)

with coupling matrix W and vektor of biases c that an adiabatic quantum computer can potentially solve.
Difficulties.
I Eq. (RPR) is not a binary problem since R is a real matrix.
I Eq. (RPR) is not an unconstrained problem since R ∈ SO(D) =⇒ R>R !

= I.

Adiabatic Quantum Computing

Principle. Construct two Hamiltonians, an inital hamiltonian H0 with ground state |E0(0)〉 = |+〉⊗n easy to
prepare and a final hamiltonian H1 with ground state |E0(1)〉 encoding the solution of the QUBO problem:
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)
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z
k

 . (2)

For the time s ∈ [0, 1], let the time-dependent system Hamiltonian adiabatically evolve from H0 to H1 as

H(s) = (1− s)H0 + sH1. (3)

Adiabatic Theorem and Evolution.

!E0(s)

E1(s)

E2(s)

s

If s varies slowly enough, the adiabatic theorem states that the
evolution of the system governed by the Schrödinger equation

i~
∂ |ψ(s)〉

T∂s
= H(s) |ψ(s)〉 , (4)

will instantaneously keep the state |ψ(s)〉 into the ground state
|E0(s)〉 of H(s), which is at s = 1 the solution of the QUBO [4].

Previous work V. Golyanik and C. Theobalt

Quantum Approach (QA, [3]). Pick a finite set of basis matrices and approximate R with a binary linear
combination. In 2D (3D similar) and using the matrix exponential for rotation matrices, approximate

R = eθS = cos(θ)I + sin(θ)S with I =

(
1 0
0 1

)
and S =

(
0 −1
1 0

)
, (5)

as R =
∑

k qkQk using binary optimization variables qk ∈ {0, 1} and selected basis matrices
Qk ∈ {ωC ∈ R2×2, ∀ω ∈ B1 := {0.5, 0.2, 0.1, 0.1, 0.05}, ∀C ∈ B2 := {I,−I, S,−S}}.

Figure: Rigid point sets registration using QA [3]. Left: Initial misalignments. Right: Results of the registration.

New approach: Iterative Quantum Transformation Estimation

Idea. Use a flexible K-bits discretization of SO(D) to approximate the rotation matrices with refinement,
optimize over the parameters of R to enforce orthogonality and iterate the process to improve accuracy.
In 2D, parameter θ ∈ R encodes rotation angle:

R = eM(θ) = cos(θ)I + sin(θ)S, with M(θ) = θS = θ ·

(
0−1
1 0

)
.

In 3D, parameter v = (v1, v2, v3)> ∈ R3 encodes rotation angle θ = ‖v‖2 and rotation axis x = v/ ‖v‖2:

R = eM(v) = I +
sin θ

θ
M(v) +

1− cos θ

θ2 M2(v), with M(v) = θ ·

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 ,

Until accuracy is satisfactory, iterate – (i) linearize, (ii) discretize , (iii) optimize:
(i) Linearize R around curent parameter zc := θc (2D) resp. vc (3D) using first order Taylor expansion.
(ii) Discretize parameter z := θ (2D) resp. v (3D) ∈ [zc−∆, zc + ∆] using the K-bits representation

z := zc + Uq where with Dk = diag(2k) (6)

U =
2∆

2K

(
D0 D1 . . . DK−1

)
∈ RP,PK and q =

(
q0 q1 · · · qK−1

)>
∈ {0, 1}KP.

(iii) For any of the points ỹi in (RPR) and with Rc being the constant term of R, we find [2] in 2D and in 3D

Rỹi ≈ Rcỹi + RiUq. (7)

Crucially, q appears linearly in Eq. (7), so (RPR) can be approximated by

min
q∈{0,1}KP

q>Wq + c>q, (QUBO)

W = U>
(

N∑
i=1

R>i Ri

)
U and c = 2U>

N∑
i=1

R>i (Rcỹi− x̃i). (8)

Experiments and Results

Ablation Study on K. The method performs
well for K = 10 in 2D and K = 5 in 3D.

Larger values of K result, due to noise, in
chain breackage that decrease the results.

QA [3] IQT [Ours]
Optimization Variable Matrix R Parameter θ resp. v
Optimization Scheme Fixed→ fixed accuracy iterative→ flexible accuracy
R orthogonal × X
Number of qubits |B1| · |B2| → 21 in 2D, 81 in 3D K · P→ 10 in 2D, 15 in 3D.

Table: A comparative analysis of our optimization method with QA [3].

(a) 2D (b) 3D

Figure: Embedding of our derived QUBOs for Eq. (RPR) on the D-Wave 2, 000Q quantum annealer [5].
We use ∼ 4.5 times more physical than logical qubits and perform 100 reads of 20µs per iteration.
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Figure: Left: Alignment error eA := ‖X̃ − RỸ‖F/‖X̃ ‖F and right: consistency error eR :=
∥∥I − R>R

∥∥
F (note

log. scale) of IQT [ours] and its classical ICT counterpart [ours] against outliers. Our
methods, compared to QA [3], robustly handle outliers while producing orthogonal matrices.
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