

An Iterative Quantum Approach for Transformation Estimation from Point Sets

Natacha Kuete Meli, Florian Mannel, Jan Lellmann

{meli, mannel, lellmann}@mic.uni-luebeck.de

Overview

We propose an iterative method for **estimating rigid transformations** from point sets using **adiabatic quantum computation**.

 $\tilde{\mathcal{X}} = \{\tilde{x}_i\}_{i=1}^N$ Reference point set (mass-centered), $\tilde{\mathcal{Y}} = \{\tilde{y}_i\}_{i=1}^N$ Template point set (mass-centered), $R \in SO(D)$ Rotation matrix that maps $\tilde{\mathcal{Y}}$ to $\tilde{\mathcal{X}}$ (has P := D(D-1)/2 degrees of freedom).

- ► Runs on an industrial adiabatic quantum computer **D-Wave**.
- ▶ Recovers R to an arbitrary precision using a user manageable number of qubits.

Figure: Results of our iterative quantum approach for transformation estimation (IQT) from point sets. **Green:** reference points. **Orange:** template points. **Left:** Initial misalignments. **Right:** Registration results. Our method performs well on several 2D and 3D datasets and robustly aligns the points even in the presence of noise.

Objective

Task. Contruct for the least-squares formulation of the rigid point sets registration problem, cf. [1, 2]

$$\min_{R \in SO(D)} \sum_{i=1}^{N} \|\tilde{x}_i - R\tilde{y}_i\|_2^2$$
(RPF)

a corresponding QUBO formulation that can be executed on a current adiabatic quantum computer. **QUBO (quadratic unconstrained binary optimization).** Combinatorial optimization problem in form of

$$\min_{q \in \{0,1\}^n} q^\top W q + c^\top q,\tag{1}$$

with coupling matrix W and vektor of biases c that an adiabatic quantum computer can potentially solve. **Difficulties.**

- \triangleright Eq. (RPR) is not a binary problem since R is a real matrix.
- ▶ Eq. (RPR) is not an unconstrained problem since $R \in SO(D) \implies R^{\top}R \stackrel{!}{=} I$.

Previous work

ork V. Golyanik and C. Theobalt

Quantum Approach (QA, [3]). Pick a finite set of basis matrices and approximate *R* with a binary linear combination. In 2D (3D similar) and using the matrix exponential for rotation matrices, approximate

$$R = e^{\theta S} = \cos(\theta)I + \sin(\theta)S$$
 with $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, (5)

as $R = \sum_k q_k Q_k$ using binary optimization variables $q_k \in \{0, 1\}$ and selected basis matrices

$$Q_k \in \{\omega C \in \mathbb{R}^{2 \times 2}, \quad \forall \omega \in B_1 := \{0.5, 0.2, 0.1, 0.1, 0.05\}, \quad \forall C \in B_2 := \{I, -I, S, -S\}\}.$$

Figure: Rigid point sets registration using QA [3]. Left: Initial misalignments. Right: Results of the registration.

New approach: Iterative Quantum Transformation Estimation

Idea. Use a flexible K-bits discretization of SO(D) to approximate the rotation matrices with refinement, optimize over the parameters of R to enforce orthogonality and iterate the process to improve accuracy. **In 2D,** parameter $\theta \in \mathbb{R}$ encodes rotation angle:

$$R = e^{M(\theta)} = \cos(\theta)I + \sin(\theta)S$$
, with $M(\theta) = \theta S = \theta \cdot \begin{pmatrix} 0 - 1 \\ 1 & 0 \end{pmatrix}$

In 3D, parameter $v = (v_1, v_2, v_3)^{\top} \in \mathbb{R}^3$ encodes rotation angle $\theta = ||v||_2$ and rotation axis $x = v/||v||_2$:

$$R = e^{M(v)} = I + \frac{\sin \theta}{\theta} M(v) + \frac{1 - \cos \theta}{\theta^2} M^2(v), \quad \text{with} \quad M(v) = \theta \cdot \begin{pmatrix} 0 & -x_3 & x_2 \\ x_3 & 0 & -x_1 \\ -x_2 & x_1 & 0 \end{pmatrix},$$

Until accuracy is satisfactory, iterate – (i) linearize, (ii) discretize, (iii) optimize:

- (i) Linearize R around curent parameter $z_c := \theta_c$ (2D) resp. v_c (3D) using first order Taylor expansion.
- (ii) Discretize parameter z:= heta (2D) resp. v (3D) $\in [z_c-\Delta,z_c+\Delta]$ using the K-bits representation

$$z:=z_c+Uq$$
 where with $D_k= ext{diag}(2^k)$ ($U=rac{2\Delta}{2^K}\left(D_0\,D_1\dots D_{K-1}
ight)\in\mathbb{R}^{P,PK}$ and $q=\left(q_0\,q_1\,\cdots\,q_{K-1}
ight)^ op\in\{0,1\}^{KP}.$

(iii) For any of the points \tilde{y}_i in (RPR) and with R_c being the constant term of R, we find [2] in 2D and in 3D $P\tilde{y}_i \sim P_i \tilde{y}_{i+1} + P_i H_C$

$$R\widetilde{y}_i pprox R_c\widetilde{y}_i + R_i U q$$
.

Crucially, q appears linearly in Eq. (7), so (RPR) can be approximated by

$$\sum_{q\in\{0,1\}^{KP}}^{\min} q^+Wq + c^+q,$$
 (QUBC) $\sum_{i=1}^{N} R_i^ op R_i$ and $c=2U^ op \sum_{i=1}^{N} R_i^ op (R_c ilde{y}_i - ilde{x}_i).$

Adiabatic Quantum Computing

Principle. Construct two Hamiltonians, an inital hamiltonian H_0 with ground state $|E_0(0)\rangle = |+\rangle^{\otimes n}$ easy to prepare and a final hamiltonian H_1 with ground state $|E_0(1)\rangle$ encoding the solution of the QUBO problem:

$$H_0 = -\mathcal{A}\left(\sum_{k=1}^n \sigma_k^x\right), \quad \text{and} \quad H_1 = -\mathcal{B}\left(\sum_{k,l=1}^n W_{kl}\sigma_k^z\otimes\sigma_l^z + \sum_{k=1}^n c_k\sigma_k^z\right).$$

For the time $s \in [0, 1]$, let the time-dependent system Hamiltonian adiabatically evolve from H_0 to H_1 as

$$H(s) = (1 - s)H_0 + sH_1.$$
 (3)

Adiabatic Theorem and Evolution.

If s varies slowly enough, the adiabatic theorem states that the evolution of the system governed by the Schrödinger equation

$$\hbar \frac{\partial |\psi(s)\rangle}{T\partial s} = H(s) |\psi(s)\rangle , \qquad (4)$$

will instantaneously keep the state $|\psi(s)\rangle$ into the ground state $|E_0(s)\rangle$ of H(s), which is at s=1 the solution of the QUBO [4].

Experiments and Results

Ablation Study on K**.** The method performs well for K = 10 in 2D and K = 5 in 3D.

Larger values of *K* result, due to noise, in chain breackage that decrease the results.

Optimization Variable Matrix R Parameter θ resp. ν Optimization Scheme Fixed \rightarrow fixed accuracy iterative \rightarrow flexible accuracy R orthogonal \times \checkmark Number of qubits $|B_1|\cdot |B_2| \rightarrow$ 21 in 2D, 81 in 3D $K\cdot P \rightarrow$ 10 in 2D, 15 in 3D. Table: A comparative analysis of our optimization method with QA [3].

(a) 2D (b) 3D Embedding of our derived QUBOs for Eq. (RPR) on the D-Wave 2,0000 quantum a

Figure: Left: Alignment error $e_A := \|\tilde{\mathcal{X}} - R\tilde{\mathcal{Y}}\|_F / \|\tilde{\mathcal{X}}\|_F$ and right: consistency error $e_R := \|I - R^\top R\|_F$ (note log. scale) of IQT [ours] and its classical ICT counterpart [ours] against outliers. Our methods, compared to QA [3], robustly handle outliers while producing orthogonal matrices.

References

- D. W. Eggert, A. Lorusso, and R. B. Fisher.
 Estimating 3-d rigid body transformations: a comparison of four major algorithms.

 Machine Vision and Applications, March 1997.
- N. K. Meli, F. Mannel, and J. Lellmann.

 An Iterative Quantum Approach for Transformation Estimation from Point Sets.

 IEEE/CVF Conf. on Computer Vision and Pattern Recognition, June 2022.
- V. Golyanik and C. Theobalt
 A quantum computational approach to correspondence problems on point sets.

 IEEE/CVF Conf. on Computer Vision and Pattern Recognition, June 2019.
- T. Albash and D. A. Lidar.
 Adiabatic quantum computation.

 Reviews of Modern Physics, 90(1), Jan 2018.
- D-Wave Systems. D-Wave Ocean Software Documentation. https://docs.dwavesys.com/docs/latest/doc_qpu.html, Oct 2021